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Società Italiana di Fisica
Springer-Verlag 2000

Velocity measurement of a settling sphere
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École Normale Supérieure de Lyon, Laboratoire de Physiqueb, 46 Allée d’Italie, 69007 Lyon, France

Received 12 April 2000 and Received in final form 13 July 2000

Abstract. We study experimentally the motion of a solid sphere settling under gravity in a fluid at rest.
The particle velocity is measured with a new acoustic method. Variations of the sphere size and density
allow measurements at Reynolds numbers, based on limit velocity, between 40 and 7 000. At all Reynolds
numbers, our observations are consistent with the presence of a memory-dependent force acting on the
particle. At short times it has a t−1/2 behaviour as predicted by the unsteady Stokes equations and as
observed in numerical simulations. At long times, the decay of the memory (Basset) force is better fitted
by an exponential behaviour. Comparison of the dynamics of spheres of different densities for the same
Reynolds number show that the density is an important control parameter. Light spheres show transitory
oscillations at Re ∼ 400, but reach a constant limit speed.

PACS. 06.30.Gv Velocity, acceleration, and rotation – 43.60.+d Acoustic signal processing –
47.27.Vf Wakes

1 Introduction

The problem of evaluating the hydrodynamic forces on a
rigid body in a moving fluid is a long standing issue. It
arises in several engineering domains which involve mul-
tiphase flows, e.g., in sedimentation, or improvement of
combustion or in the minimization of erosion by droplets
in large turbines. All these problems are concerned with
the dispersion of particles, whose modeling requires some
understanding of the particle dynamics. Another question
is the ability of dispersed solid particles to follow the fluid
motion when their density or initial velocity do not quite
match the fluid properties, that is the ability of solid par-
ticles to behave as Lagrangian tracers of fluid motion.
This issue is of importance for the prediction of disper-
sion of pollutants in the atmosphere or in measurement
techniques such as particle image velocimetry (PIV). Our
own motivation comes from work aiming at developing
a Lagrangian tracking technique for the motion of a few
solid particles during large intervals of times, in a turbu-
lent flow. It raises the question of the response of a particle
to rapid changes in the velocity of the fluid, or to a sudden
acceleration.

Analytical approaches to the time-dependent motion
of a solid particle in a given fluid flow have been restricted
to zero or small Reynolds numbers. However, they provide
a general frame of description of the forces acting on the
particle. We briefly recall their main results, as a basis for
the analysis of our experiments. Consider the motion of a
solid body in a general time-dependent flow: external and
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hydrodynamic forces set the body into motion, and this
motion in turn modifies the fluid flow since it introduces
a moving boundary condition. The equation of motion for
the viscous fluid are the Navier-Stokes equations supple-
mented by boundary conditions at infinity (in free space)
and on the solid body. In order to solve this problem, the
general approach is to obtain expressions for the forces on
the particle, in terms of the properties of the fluid flow in
its absence. Perturbative developments are made, in which
the stress tensor is split into contributions from the undis-
turbed flow and corrections due to fluid motion induced
by the particle displacement. The complexity of the prob-
lem stems from the calculation of the latter term which
contains the history of the particle motion.

In the limit of vanishing Reynolds numbers, Maxey
and Riley [1] have proposed for the equation of motion of
the particle :
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dvp

dt
= (mp −mf)g +mf
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where ρf is the density of the fluid, µf its viscosity,
u the undisturbed flow field, vp is the sphere velocity
(u − vp is the slip velocity), a its radius, mp its mass
and mf is the mass of the fluid displaced by the sphere
(mf = (4/3)πa3ρf). As customary, we note dvp/dt the
acceleration of the particle and Du/Dt ≡ (∂t + u.∇)u
that of the fluid. This expression is established for non-
uniform non stationary creeping flow, and providing that
ρfaW0/µf � 1, ρfa

2U/(µfL) � 1 and a/L � 1 (U is an
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order of magnitude of the velocity of the fluid, W0 is an
order of magnitude of u − vp and L is a representative
differential length scale of the unperturbed flow). Note
that when u = 0, equation (1) reduces to the historical
Basset (1888), Boussinesq (1903) and Oseen (1927) ex-
pression for the rectilinear fall of a sphere in a fluid at
rest, again in the limit Re → 0 – here, Re = 2aU/ν with
U the limit velocity. The above expression neglects the
effects of rotation of the particle. We will do the same
throughout this work as we do not observe lift effects in
our measurements.

Equation (1) has a “canonical form” in the sense that
the terms on the right hand side can be interpreted in a
simple way. They are, respectively, gravity, effect of the
undisturbed flow, steady drag, added mass and Basset
memory integral:
Simple hydrodynamic contribution. The second term cor-
responds to the forces that would be applied on a fluid
particle that would be at the place of the sphere in the
undisturbed flow. In the case of a particle settling in a
fluid at rest, this term vanishes.
Drag. The steady drag is responsible for the limit veloc-
ity of a sphere falling under gravity. The expression in
equation (1) is valid only for Re = 0. It is well known
that for finite Reynolds numbers, the convective inertia
increases the drag. The analytic expression is not known
for all Reynolds numbers but the empiric law for the drag
coefficient as a function of Re is well documented from
Re→ 0 up to values higher than 107. One usually writes
the steady drag as :

Fdrag =
1
2
πa2 ‖u− vp‖ (u− vp)cD(Re), (2)

where cD is the empiric drag coefficient and Re is the in-
stantaneous Reynolds number based on the slip velocity.
Added mass. The added mass term, classically found in
mechanics, is an inertial term and is due to the resistance
of the surrounding fluid to acceleration. It has been dis-
cussed also by Auton et al. [2], Rivero et al. [3] and Chang
and Maxey [4] who showed that it has to be replaced by

Fadded mass =
1
2
mf

(
Du
Dt
− dvp

dt

)
. (3)

The difference is subtle: in equation (1), du/dt refers to
the total time derivative of the velocity field following the
motion of the sphere, whereas Auton et al. [2] use the La-
grangian acceleration of the fluid at the particle location.
While the issue is still debated, the expression proposed by
Auton et al. [2], Rivero et al. [3] and Chang and Maxey [4]
gives all its meaning to the name “added” mass; indeed, in
equation (1), the term involves an effective inertial masses:
mp + 1

2mf for the sphere and 3
2mf for the fluid particle.

Note that it yields an inertial mass (mp + 1
2mf) that is

different from the gravitational mass (mp−mf); and very
much so in the case of particle with a density close to that
of the fluid. We will show in Section 3.5 that such effects
may be of importance.
History. Together with the added mass term, the last term

traces back to the modification of the base flow due to the
motion of the particle. Thus, it a priori involves the en-
tire history of the particle motion. In Maxey and Riley’s
expression, Stokes flows are considered, so that the only
transfer mechanism is diffusion. If the Reynolds number
is finite, one has to deal with convective inertia even for
small values of Re. As noted in Lovalenty and Brady [5],
one must then take into account the generation of vortic-
ity on the sphere, its diffusion away from the sphere and
finally its advection in the wake. In such cases, it is doubt-
ful that the memory term may be expressed in the form of
a convolution with a simple kernel. Lovalenti and Brady’s
expression involves the relative position of the particle at
different times, for all past times. More generally, a ker-
nel may depend of t − τ but also on Re(τ) and possibly
of other parameters, such as the the density or even the
details of the particle trajectory itself.

At small Reynolds numbers analytical developments
have converged to the following structure for the equation
of motion of the particle:

(mp +
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mf)

dvp
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= (mp −mf)g +
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mf

Du
Dt

+
1
2
πa2ρf ‖u− vp‖ (u− vp)cD(Re) + Fhistory. (4)

We will show that this expression remains very useful to
interpret observations at much higher Reynolds numbers.

Experimental studies of this problem are scarce. As ex-
plained above, the steady drag term comes entirely from
experimental measurements of the drag coefficient in the
case of a steady flow past a fixed sphere [6]. The added
mass term expression has been validated by numerical
simulations of Chang and Maxey [4] for a fixed sphere in
an accelerated flow. Shridhar and Katz [7] used it to show
that measurements of bubble motion yield consistent re-
sults for the drag, compared to the classical estimation
of the force acting on a fixed object. The question of the
history term is more complex. Several numerical studies
of Lawrence and Mei [8], Chang and Maxey [4] and Kim
et al. [9] agree with the existence of a kernel varying as
t−

1
2 for short times. The long time behaviour is more un-

certain, probably due to resolution problems. Indeed, as
found by Lawrence and Mei [8], the transient between the
two regimes is exponential, with a kernel that drops sev-
eral orders of magnitude before the long time asymptotics
is reached. Experimentally these questions have not been
addressed although it is well known that particles do reach
a limit velocity in a finite time, a fact that cannot be ac-
counted for with a t−

1
2 kernel.

Our experimental study covers the range of interme-
diate (Re ∼ 40) to high Reynolds numbers (Re ∼ 8 000),
for the problem of the settling sphere. At the onset of
motion, we observe the presence of a diffusive Basset
force. The particle then leaves this regime and reaches
a finite velocity in a characteristic time of the order of√
a/g. The observed limit velocity is consistent with pre-

vious measurements of the drag on a fixed sphere. We also
show that density effects are important at Reynolds num-
bers of about 400, i.e. near the onset of vortex shedding:
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Fig. 1. Experimental setup and principle of measurement.

the velocity of the falling sphere oscillates as it reaches its
(steady) limit value.

We present the apparatus and experimental technique,
before describing our results in details.

2 Description of the experiment

2.1 Principle

The aim of our experiments is to measure the velocity
of a solid sphere falling vertically under gravity in water
initially at rest – see Figure 1. The bead is released without
any initial velocity or rotation.

The velocity of the particle is detected using a new
acoustic method. It is based on the measurement of the
Doppler shift of an ultrasonic wave scattered by the mov-
ing particle. If one records the scattered ultrasound in a
chosen direction, one observes a Doppler shift in the pul-
sation of the wave

∆ω = q · vp, (5)

where q is the scattering wavevector (the difference
between the incident and scattered wavevectors q =
kscat−kinc). In the backscattered geometry adopted here,
q = −2kinc, so that the frequency shift becomes

∆ω(t) = −2
v(t)
c
ω0, (6)

where c is the speed of sound, ω0 is the incident pulsation,
and v(t) is the component of the velocity on the incident
direction at time t. This is a valid approximation providing
that the travel time of the sound between the transducer
and the bead is much smaller than the characteristic time
of the evolution of the bead’s velocity. In our experiment,
the largest travel time is of the order of 0.5 ms.

2.2 Experimental set-up

The experiment is performed in a tank of size
1.1 m× 0.75 m and depth 0.65 m, filled with water at
rest, see Figure 1. Beads made of glass, steel and tungsten

Table 1. Characteristics of the solid spheres and of the experi-
ments. The third column indicates the sphere material: g glass,
s steel and w for tungsten carbide. Vl is the limit velocity and
σVl the corresponding variance. ρp is the density of the bead.

# 2a ρp Vl σVl

σVl
Vl

Re τ95

mm kg m−3 m s−1 mms−1 % ms

1 0.5 g 2560 0.0741 0.4 0.6 41 55
2 1.5 g 2560 0.218 0.9 0.4 360 142
3 2 g 2480 0.271 1 0.5 600 197
4 0.8 s 7710 0.316 3 0.9 280 108
5 1 s 7850 0.383 2 0.5 430 132
6 2 s 7670 0.636 1 0.2 1400 197
7 3 s 7800 0.813 4 0.5 2700 225
8 4 s 7700 0.973 4 0.4 4300 292
9 6 s 7750 1.158 5 0.4 7700 315
10 1 w 14800 0.590 2 0.3 660 148

are used. Their specifications and main characteristics of
motion are reported in Table 1.

The bead is held by a pair of tweezers, five centimeters
below the transducers. It is released a time t = 0 without
initial velocity and its trajectory is about 50 cm long. We
start the data acquisition before the bead is released in
order to capture the onset of motion.

The non-perturbed flow is simply the hydrostatic state.
This induces an axisymmetry in the initial condition about
the vertical axis that contains the center of the bead. For
low Reynolds numbers (say less than 200), the flow around
the sphere remains axisymmetric so that the rotation of
the bead remains zero. We have observed that the tra-
jectory is vertical and we assume throughout this work
that it is rotation free. The Reynolds number based on
the sphere diameter and velocity has typical values from
40 to 7700 which are relatively high values for that prob-
lem. The limit velocity of the sphere varies from 0.07 to
1.16 m s−1.

We use two coplanar arrays of Vermon ultrasonic
transducers of size 2×2 mm each, separated by 100 µm.
Their resonant frequency is about 3.2 MHz and their
bandwidth at −3 dB is 1.5 MHz. This array is placed par-
allel to the bottom of the tank and 1 cm below the free
surface of the water. The emission is toward the bottom
of the tank. A function generator Hewlett Packard VXI
HP E1445A produces the emission sinusoid at 3.5 MHz
or 2.5 MHz (depending on bead size). This signal is sent
to one of the ultrasonic transducers. The acoustic wave is
backscattered by the falling bead and detected by the sec-
ond transducer. The received signal is digitized at a sam-
pling rate of 10 MHz and over a 18 bit dynamic range,
numerically heterodyned at the emitting frequency and
decimated to the chosen sampling frequency by a VXI
embedded HP E1430A sampling device driven by a PC.

2.3 Signal processing

For velocities of the order of 0.5 m s−1, one expects
a Doppler shift of about 2 kHz. As a result of the
heterodyning, the frequencies are shifted around zero
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Fig. 2. Power spectrum of the backscattered sound, in the case
of steel bead of diameter 0.8 mm, for an incoming sound fre-
quency at 3.5 MHz. In this measurement, the bead has reached
its limit velocity. The arrow indicates the particle Doppler
shift; spurious frequency lines at harmonics of 50 Hz are also
present.

the frequency and the signal is complex. It also contains
contributions of reflexions of the incident wave on the walls
and at the free surface. The walls do not move and thus do
not induce a frequency shift. It was not possible to totally
avoid surface waves on the interface air/water but their
speed is very low compared with that of the falling bead.
Thus the Doppler shift induced by these reflexions is about
15 Hz, small compared to the typical 1 kHz shift due to
bead motion. The frequency domains are well separated
and it is possible to get rid of reflexions by a numerical
lowpass fifth order Butterworth filter of width 25 Hz (the
velocity associated to this Doppler shift is 0.005 m s−1 for
an emitting frequency equal to 3.5 MHz).

Figure 2 shows an example of the power spectrum of
the backscattered signal. One can see an intense peak
around the incoming frequency (shifted to zero) and a
peak in the negative frequency domain corresponding to
the sound scattered off the falling bead. The Doppler shift
of this latter peak gives the particle velocity.

In order to obtain its time evolution, one must perform
a time-frequency analysis. One way is to compute the spec-
tra through a running window, i.e. the spectrogram of the
signal. An example is given in Figure 3a. This technique
captures the evolution of the bead velocity, but the reso-
lution is low, as apparent on the inset of the figure which
shows a normalized cross-section of the spectrogram. One
way to improve it drastically is to use a method of reas-
signment of the spectrogram, as described by Auger and
Flandrin [10]. In this way one obtains the picture shown in
Figure 3b. From it, we extract the function ∆ω(t) by sim-
ply taking the maximum of amplitude at every time t, and
obtain the function vp(t), shown in Figure 4. Comparison
of the inset in Figure 3b with the one in Figure 3a shows
that we obtain in this way a 10-fold gain in the precision
of the velocity measurement.

In order to estimate the sensitivity of the method, we
applied it to synthetic signals modeling the particle dy-
namics (see next section) to which we added a noise that
mimics the experimental data (a white gaussian noise with
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Fig. 3. (a) Spectrogram of the backscattered sound, after het-
erodyne detection, for the same bead as in Figure 2. (b) Reas-
signed spectrogram. In each figure the inset shows a normalized
cross-section of the spectrogram.

a 1/f low frequency noise cut at 25 Hz as in the experi-
ment). The signal to noise ratio for the synthetic signal is
equal to that of the experimental data. We observe that
the resolution of the measurement (in rms units) is of the
order of one-half pixel in the time frequency image; it cor-
responds to a precision of 0.3% on the particle velocity
with a time resolution of about 1 ms. Note that the pre-
cision is quite reduced at the instant of onset of motion
(t < 5 ms and V < 0.02 m/s), because of the integrating
nature of the algorithm.

We can also estimate the measurement error exper-
imentally in the steady regime, when the particle has
reached its terminal velocity. It can be estimated in two
ways: first, as the fluctuation in the detected Doppler shift
during a single fall and, second, as the rms variation of
the limit velocity measured from a set of 10 falls. This
procedure yields a mean rms error of 0.5% on the particle
velocity, as indicated in Table 1.
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Fig. 4. Velocity of a steel bead of diameter 1 mm (solid line),
compared to simulation without memory force (dashed) and
with Stokes memory (dash-dotted). The inset shows an en-
largement near the onset of motion. The Reynolds number,
based on the limit velocity is 430. The sphere velocity profile
results from averaging n = 10 successive experiments.

2.4 Simulation

In order to draw some comparison between our measure-
ments and the models mentioned in Section 1, we compute
numerical solutions of equation (4), in the case of a fluid
at rest:

(mp +
1
2
mf)

dvp

dt
= (mp −mf)g

− 1
2
πa2ρf ‖vp‖vpcD(Re) + Fhistory. (7)

We have considered either the case of no memory, or
the diffusive kernel of equation (1), named respectively
“no memory” and “Stokes memory” simulation for conve-
nience. The numerical scheme uses a fourth order Runge-
Kutta in time and Newton-Cotes formulas for the history
terms.

3 Results

3.1 General features

We first discuss features that are common to all measure-
ments. As an example, we present in Figure 4 the velocity
measurement for a steel bead with diameter 1 mm. Start-
ing from rest, the bead has a monotonous acceleration and
reaches a terminal velocity. From this measurement, we
compute the drag coefficient and compare it to standard
measurements made on fixed spheres (Sect. 3.2).

We also show in Figure 4 velocity profiles computed
from equations of motion without memory term and with
a Stokes memory force. The actual motion shows that
while there has to be a memory force as in equation (7),
it does not follow the Stokes expression at all times
(as explained above, the deviation at very small time
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Fig. 5. Empirical curve (solid) for the drag coefficient (from
reference [12]) versus Reynolds number and our experimental
measurements (o).

– t < 5 ms – is an artifact of the algorithm). This is dis-
cussed in Section 3.3.

We observe that two control parameters influence the
dynamics of the fall: the Reynolds number (see Sect. 3.4)
and the density of the particle (discussed in Sect. 3.5). In
all cases we note that the asymptotic state of motion is
stationary and that the limit velocity is reached in a finite
time.

3.2 Drag

We measure the limit velocity Vl for every configuration
given in Table 1. In each case the motion has reached a
stationary state, so that Vl is well defined. All measure-
ments are made on velocity profiles obtained after averag-
ing about 10 realisations – transient effects are discussed
in Section 3.5. Knowing the limit velocity Vl of a bead, we
calculate the drag coefficient by removing non stationary
terms in equation (7) and obtain cD(Re):

cD =
8ag(d− 1)

3V 2
l

· (8)

In the calculation of the Reynolds number we use the
value for the viscosity of water at 25 ◦C, ν = 0.89 ×
10−6 m2 s−1 [11] – a value confirmed by an independent
measurement with a Ubbelhode viscosimeter. Our experi-
mental curve cD(Re) is given in Figure 5, where it is com-
pared to standard empirical drag measurements [12]. The
results are in good agreement: the drag coefficient is the
same in the case of a fixed sphere and in the case of a free
settling bead. It is generally admitted this should be true
at low Reynolds number, where numerical and analytical
studies agree that the drag is indeed given by the Stokes
expression. However, at higher Reynolds numbers this re-
sult is not so obvious. Indeed, it may be surprising that the
particle reaches a stationary limit velocity, and thus prob-
ably a stationary momentum flux across the wake (see
also Sect. 3.5). This is an important difference with ob-
servations of the wake past a fixed sphere [13,14] where



348 The European Physical Journal B

the incoming flow is set at a constant uniform speed and
the force acting on the body may there take any value.
In that case, instabilities in the wake are known to ex-
ist and are related to vortex shedding. In our case, the
constraint is just that the forcing gravity is constant, any
change on the force felt by the sphere must be related to a
change on the fluid motion. One also notes that for fixed
bodies near the onset of vortex shedding, only averages of
the drag force are reported and the matter may deserve
further investigations, see [15].

We emphasize that in a given experiment the limit ve-
locity is a priori unknown, it results from the balance of
gravity and drag forces, which are in turn Reynolds num-
ber dependent. From equation (7), one obtains an implicit
equation for the Reynolds number:

Re2cD(Re) =
32a3(d− 1)g

3ν2
· (9)

In any experiment one chooses the density of the sphere
and its size; the Reynolds number is set by the dynamics
of the motion.

3.3 Memory effect

We now address the question of the cumulative effect of
the development of the wake on the body motion, i.e. the
“memory effect”. To wit, we use experiment #5 as an
example (steel bead with diameter 2a = 1 mm). We com-
pare the measured velocity profile to numerical resolution
of equation (7) first without memory term and then with
Stokes memory – see Figure 4. For short times (t < 30 ms),
one observes a deviation from the behaviour that would
be in the absence of memory. The recorded velocity of
the sphere is close to the simulation with Stokes memory,
for times less than 20 ms. At times larger than 20 ms,
the measured velocity separates from the Stokes memory
curve (almost by necessity since the Stokes approximation
is valid only in the near wake). The bead then reaches its
limit value for t ∼ 300 ms. An interesting feature is that
the measured velocity profile always lies between the two
simulated curves: Stokes term, which corresponds to ‘infi-
nite memory’ and no memory at all.

To investigate further, we have derived from our mea-
surement the memory force term, computed as the total
force (obtained from the velocity derivative) minus the
gravity and drag terms. Figure 6 compares the result with
the Stokes memory simulation. Despite the noise of the
measurement, one observes that the two curves have simi-
lar shapes. In particular the memory force reaches a max-
imum for a time that is correctly given by Stokes’ ap-
proximation, although the actual memory force is always
smaller. The differences are more marked at later dates.
The Stokes memory term loses only 50 percent of its peak
value in 0.25 s whereas the measured memory term van-
ishes in the same time (within experimental precision).
These results are in agreement with numerical simulations
of Lawrence and Mei [8]: for small times we observe a
Stokes behaviour and for longer times the decrease of the

0 0.1 0.2 0.3 0.4 0.5 0.6
-1

0

1

2

3

4

5

6

7
x 10

-6

time ( s )

F
m

em
or

y (
 N

 )

Fig. 6. The memory term of equation (7) calculated from the
measured velocity of the sphere of the previous figure.

transient term is much more rapid than t−
1
2 . The authors

predict, in the limit of very long times, a t−2 behaviour,
after a strong, possibly exponential, decrease of several
orders of magnitude of the transient force in the case of
an abrupt change of velocity. If a similar phenomenon oc-
curs in our case, after an abrupt decrease, the asymptotic
term may be smaller than the finite accuracy of our mea-
surement (which comes from the finite size of the pixels in
time-frequency pictures, from acoustical and electromag-
netic noises).

We note that in all the experiments the sphere expe-
riences a Stokes-like history force during the early stage
of motion, until a significant fraction of the terminal ve-
locity is reached (between 1/3 and 1/2 of Vl). This may
correspond to quite high instantaneous Reynolds numbers
(Re ∼ 300 in experiment #5). The memory term has thus
a significant contribution despite the fact that the ampli-
tude of the history force is at best a tenth of the particle
weight.

3.4 Reynolds number effects

Velocity variations at various Re are given in Figures 7
and 8 for experiments #1,4,6,7,8.

We first discuss curve #1, which corresponds to a
glass bead of diameter equal to 0.5 mm. It has the lowest
Reynolds number, about 40, achieved in our experiments
and falls into the range of Re values where numerical sim-
ulations have been reported by Lawrence and Mei [8]. We
observe that its behaviour is quite similar to that of all of
our measurements: a Stokes memory behaviour at short
times and a transition period where the bead reaches its
limit velocity in a finite time – long, power law memory
behaviour is not detected.

In order to investigate the Reynolds number depen-
dence and to separate it from density effects, we use steel
spheres with varying diameter – see Figure 8. We see that
the evolution is qualitatively similar for all the beads: the
sphere reaches its limit velocity in a finite time. The value
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Fig. 7. Velocity profiles in experiments #1. The Reynolds
number, based on the limit velocity is equal to 41.

of this limit and the time it takes to reach it depend on
the size of the bead. We define a characteristic time τ95

as the time it takes for the bead to reach 95% of the limit
speed – numerical values are given Table 1. A general di-
mensional analysis of the problem gives the following ex-
pression for τ95:

τ95 =
(
a

g

) 1
2

F (Re, d), (10)

where F is a priori some function of density and Reynolds
number. If one subsequently uses equation (7) without the
history term, one obtains a characteristic time:

τ0 =

√
8
3

√
a

cD0g

d+ 1
2√

d− 1
, (11)

where cD0 is the drag coefficient based on the terminal
velocity and contains the Reynolds number dependency.
However, we observe that our measurements show al-
most no Reynolds number dependence when τ95 is non-
dimensionalized by (a/g)

1
2 , see Figure 9: the characteris-

tic time for our Reynolds interval is almost (a/g)
1
2 (for

a given particle density) which is a convective time. For
very low Reynolds numbers, neglecting the history inte-
gral, one would predict a diffusive time a2/ν. These points
confirms that for Reynolds numbers much greater than 1
the nature of the phenomena involved in the bead motion
changes from diffusion to advection. We also note that the
memory terms must be taken into account at Reynolds
numbers up to 4000 in order to correctly describe the par-
ticle acceleration.

Assuming now that the drag coefficient is known from
reference tables, and given the above discussion on the
characteristic time, we re-plot the velocity variations non
dimensionalized by Vl and as a function of t∗ = t/(a/g)

1
2

(see Fig. 10). In that manner, after Stokes regime, all
the curves surprisingly collapse onto a single exponential
shape:

vp

Vl
= 1− exp

(
− 3t
τ95

)
· (12)
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Fig. 8. Velocity profiles in experiments #4 (a), 6 (b), 7 (c),
8 (d) corresponding to steel beads with diameter 0.8, 2, 3, 4 mm
– see Table 1.
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versus Reynolds numbers for the steel spheres of diameters
from 0.8 to 4 mm.
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Fig. 10. Velocity measurements in non-dimensional units for
the steel spheres of diameters from 0.8 to 4 mm. The ◦ symbols
represent the exponential of equation (11).

This observation may be of value for the intermediate time
modeling of a particle in varying flow conditions, as may
occur in turbulence.

Lastly, inspection of the largest Reynolds num-
ber available shows an interesting phenomenon, as in
Figure 11 where we present the result for the 6 mm steel
bead – experiment #9. At moderate Reynolds number we
have noted that the velocity profile lies in between the
Stokes and no-memory curves. This is not so here; the
bead first accelerates with no memory force (t < 80 ms)
and then experience an abrupt reduction of its acceler-
ation (from a1 = 6 m s−2 to a1 = 3.6 m s−2 in less than
20 ms). In this process, its velocity becomes lower than its
Stokes value. However, the velocity still reaches its limit
value in a finite time of the order of (a/g)

1
2 , a rather subtle

compensation of a start with little memory effect followed
by a regime with ‘more than Stokes’ memory. The limit
value is in agreement with the empirical drag coefficient.
We stress that this behaviour is quite reproducible and
that precursors of it, although shallow, can be detected
on our recordings for the 3 and 4 mm spheres. Such an
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Fig. 11. Velocity measurement and corresponding simulations
for the 6 mm steel sphere Re = 7700.

abrupt change must be related to a change in the particle
wake; it appears for Reynolds numbers greater than 3 000
and seems to increase with the diameter of the bead.

3.5 Density effects

The density d = ρp/ρf appears in equation (7) in two
ways. First in the gravity term the quantity d − 1 takes
into account buoyancy and enters in the effective gravi-
tational mass. Density appears in a different way in the
effective inertial mass: in that case it is d+ 1

2 . Indeed from
equation (7) one has:

dvp

dt
=

3
8
v2

pcD(Re)
a(d+ 1

2 )
− d− 1
d+ 1

2

g +
Fhistory

mf(d+ 1
2 )
· (13)

The effective drag and gravity vary as (d − 1)/(d + 1/2)
whereas the memory term varies as 1/(d+ 1/2). Its con-
tribution is enhanced at lower density.

Thus by changing the value of density we vary the ratio
of inertial to gravitational mass and we expect to observe
different dynamical behaviours. In particular, we expect
the motion of a lighter bead to be more influenced by the
eventual unsteadiness of its wake. In Figure 12a,b we com-
pare two beads with Reynolds numbers close to 400 (glass
and steel) or 630 (tungsten carbide and glass) without
any averaging. In both cases, we can see that the velocity
of the glass bead presents oscillations while approaching
its limit value. Such oscillations must be linked to a tem-
poral evolution of the particle wake. One observes that
the velocity is no longer a monotonous function of time:
it alternates periods of increase and decrease. For this to
happen, the acceleration of the particle must change sign;
in particular the reaction of the wake on the particle is
sufficient to overcome the (reduced) gravitational force. It
is not observed for the denser metal spheres.

The oscillations disappear if the motion is averaged
over several falls – see Figure 12c,d. In that way, we ob-
tain roughly equal τ95 characteristic times for the beads
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Fig. 12. Velocity measurement without averaging for (a) tung-
sten carbide D = 1 mm (dashed) and glass D = 2 mm (solid)
Re ∼ 400 and (b) steel D = 1 mm (dashed) compared with
glass D = 1.5 mm (solid) Re ∼ 630. (c) and (d) are equivalent
plots for the motion averaged over 10 experiments.

of all densities. The vanishing of the oscillations when av-
eraging shows that the events in the wake that are re-
sponsible for them are not coherent, in the sense that
they do not occur at fixed times (phases). It is tempt-
ing to associate these events with the vortex shedding
that may occur at these Reynolds numbers (for a fixed
sphere the threshold is Rec ∼ 250). However we note
that the oscillations are slower than what is reported for
a fixed sphere: we measure an effective Strouhal number
St ∼ 0.05 (see Fig. 12b) whereas Sakamoto and Haniu [14]
indicates St ∼ 0.2 for Re ∼ 500. Finally, we observe that
the oscillations are damped. Within the limits of our res-
olution and experimental apparatus it is not possible to
state on the persistence of (small) oscillations in the limit
of very large times.

4 Concluding remarks

We have implemented a continuous tracking of the
Doppler shift of the ultrasound backscattered by a moving
particle. This method is an extension with a high resolu-
tion in time of the classical pulsed radar and sonar tech-
niques.

We have considered the existence of memory effects
that result from the hydrodynamical interaction between
a moving sphere and its wake in the case of a settling
bead in a fluid at rest. In the case of particles much denser
than the fluid, and at intermediate Reynolds number, our
results are in qualitative agreement with numerical simu-
lations of [4,8,9]: we observe a memory term varying as
t−1/2 at short times, followed by an exponential decrease.
We note that memory effects have a significant influence
at Reynolds numbers of a few thousand. The motion of
the bead can be interpreted as resulting from the inter-
action with the wake. At small Reynolds number it has
a Stokes-like behavior due to the simple diffusion of vor-
ticity; at later stages one must also take into account ad-
vection effects and the ‘memory’ term becomes gradually
more complex. In particular, the eventual non stationarity
of the wake may lead to very complex transient dynamics.

The case of lighter beads shows that density is an-
other control parameter. For Reynolds numbers of a few
hundreds, we observe a behaviour not yet described by
analytical nor numerical work: the velocity of the particle
shows transitory oscillations while reaching a stationary
limit value. We propose that this may be due to transient
vortex shedding in the wake of the sphere which reacts
on the motion of the particle. This is an important differ-
ence with the case of a sphere constrained to move at a
constant speed (or equivalently fixed in a flow at constant
speed); in that case the force felt by the sphere oscillates
continuously at the frequency of vortex shedding. In our
case here, the bead is forced with a constant gravity and
we observe that its limit speed is stationnary. This matter
certainly deserves further investigations.
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